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Interpolation and Functions of Class H(k, o, 2)'

E. B. SAFF?

Unirersity of Maryland, College Park, Maryland 21201

In the present note we consider the problem of finding a function f(z),
analytic in the open unit disk, which takes specified values in certain given
points and also satisfies an integrated continuity condition over the unit
circumference . Specifically, we shall deal with functions of the type described
in the following

DErRINITION, If k is a nonnegative integer, a function f'(z), analyticin |z| < 1,
is said to be of class H(k,a,p),0 < < 1,p > 1, ony, if f*¥ (2)is of Hardy class
H, on vy, i.e., the integral

fz" | f(r €19)[? d6

is uniformly bounded for 0 < r < 1, and if there exists a constant 4, indepen-
dent of ¢ and 6, such that

f:“ | f®(ei0) — £ O O1D) |2 dh < A||2".

Hardy and Littlewood were the first to point out that degree of approxi-
mation in the mean by trigonometric polynomials is closely related to the
integrated Lipschitz conditions which are satisfied by the approximated
function. The proofs of the theorems stated by Hardy and Littlewood were
first given by Quade [3]. Walsh and Russell [I] used the results on mean
approximation by trigonometric polynomials to prove analogues for approxi-
mation in the mean on y by polynomials in z. They established

THEOREM 1. Let g(z) be defined almost everywhere on y. A necessary and
sufficient condition that g(z) be equivalent (i.e. equala.e.) ony to afunction f(z) of

! This paper was presented to the Am. Math. Soc. April 24, 1967.

The results presented here are part of the author’s doctoral dissertation, which was directed
by Professor J. L. Walsh at the University of Maryland. The research was supported (in part)
by N.A.S.A. Fellowship Trainee Grant NsG(t)343.

2 Present address: Department of Mathematics, Imperial College of Science and Tech-
nology, London, England.

488



crLass H(k,«,2) 489

class H(k,e,p), 0 <a <1, p=1, on v, is that there exist polynomials p,(z) of
respective degrees n, such that

Y
([, 2@ - p@" (dzl)"” < dyfnre. 1)
For p = 2, this theorem yields the following result on interpolation:

COROLLARY 1. If values w;, i=0, 1, ..., are given, a necessary and sufficient
condition that there exist a function f(2) of class H(k,,2), 0 <a <1, on vy,
satisfying f V(0) = w, for all i, is that

(ii |wi/i!‘2)m — O(1[r+),

The proof follows from the fact that the series 2§ (w,z!/i!) is both a Fourier
series on y and a series of interpolation in the origin.

We shall show that Corollary 1 is a special case of a theorem which applies
to more general points of interpolation. Before proceeding with this result,
we prove an extension of Theorem 1 which applies to approximation by certain
types of rational functions. By a rational function of type (m,n) we mean a
tunction of the form

@Gz +a z" .. +a, n

b7 i b 1. b o *O

THEOREM 2. Let g(z) be defined almost everywhere on vy and let B; be a sequence
of points such that |B;| < p<1forj=1, 2, .... A necessary and sufficient con-
dition that g(z) be equivalent on vy to a function f(z) of class H(k,o,p),0 < a < 1,
p =1, ony, is that there exist a sequence of rational functions r,(z) of respective
types (n—1,n) with formal poles in the points 1/B,, 1/Ba, .... 1B, ie.,
r2) = q,(2)/(1 = By 2)...(1 — B,2) for some polynomial q,(z) of degreen— 1,
such that

(], 18@ = ri@)le dzl) " < g+~ @

We first establish necessity. Let p,(z) be a sequence of polynomials of
respective degrees n which satisfies (1), and let R, ,(z) be the rational function
of type (m — 1,m) with formal poles in the points 1/8;, 1/f,, ..., 1/, that
interpolates to p,(z) in the points B, B, ..., Bn- By the extension of the Hermite
formula ([2], p. 186), we have

I B.&)20) )
p,,(z) - Rn.m(z) = 57-7—1 flt)=a m:;)dl, l2| < g, 3)

where

l<o<l/p and Bm(z)zﬁ(z-ﬁ,)/(ﬁ,z—l).
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The convergence of the p,(z) in the mean of order p on vy, implies the
existence of a constant L, such that

'V o7 |dt | < Ly, n=1,2,...,
and hence ([2], §5.2)
PO <LLio", i} =0, )

where L is a constant independent of n. Since |B,(z)| =1 whenever |z| = I,
and ([2], p. 229)

(Bt — DIt =B <L+ po)(p+0),  |t]=0,
we obtain from (3) and (4),
|Pi(2) = Ry m(2)| < Mo"[(1 + po)/(p + @)]",  zony.

Now select a positive integer A so large that u = o[(1 + po)/(p + )" < L.
Then we have

o 1
(J y |pn(z) - Rn,}\n(z)‘p |dZ|) ” < Ml f"’n:
and so from (1) there follows
1 '
(], 6@ = Ru a7 1dzl) " < Aujm=*= + My " < Agfnt=.
Finally, if we set

rz) = 0, n=1,2,..,A~1,

TR 2Z), m=As, A5+ 1, L As A,

then the r,(z) are rational functions of the desired types which satisfy (2) fora
suitable choice of the constant 4,. Indeed, it suffices to choose A4, larger than

the quantity
AN+ Q= 1y ([ g jz)) .

To prove sufficiency, assume that rational functions r,(z) of respective types
(n — 1,n) with formal poles in the points 1/8,, 1/B,, ..., 1/B, satisfy (2). Since
the r,(z) converge in the mean of order p on , we have

[ In@leld <y n=1,2,.
and hence ([2], p. 255)

(@) < Ly L[(0 — p)/(1 = po)]", 2] =0,
where L; is a constant independent of #, and 1 < ¢ < 1/p. The extension of

Theorem 1 to approximation by bounded analytic functions ({/], p. 368) now
yields the desired conclusion.
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If a function fy(z) is defined in the points §8;, then f3(z) may be expanded in
a formal series found by interpolation in the ;. Such a series is

Sfol2) ~ay /(1 - 51 z)+ '22 az—By)...(z~ B/l ~ Bl z)...(1—- an), &)

where a, = fo(81)(1 — B.8.), and where the coefficient a, is determined by the
condition that (if precisely k of the points £, ..., B,_; are equal to $,) the kth
derivative of the sum of the first n terms of the series in (5) will coincide with
f4¥(z) in the point B,. It then follows inductively that the sum of the first #
terms interpolates to fo(2) in the points 8y, ..., B,, and hence the formal ex-
pansion (5) converges to fy(z) in each B,.

If f5(z) is of class H, on y, then it is known (2], §9.1) that the above expansion
is also the generalized Fourier series expansion of fy(z) in terms of the
orthogonal functions

$u(2) =

(1 —-Bi2), n=1,
z—B)...C- )1 -Fi2)...A=fu2), n>1,

on y. The equivalence of these series together with Theorem 2 imply the
following generalization of Corollary 1:

THEOREM 3. Let the points B, |B;l <p <1,j=1, 2, ..., and functional values
Jo(B;) be given. A necessary and sufficient condition that there exist a function

f(2) of class H(k,2,2),0 < o < 1, on vy, satisfying f(B,) = fo(B,)) for all j, is that
© 1/2
(2 1ar) " -0, ®

i=n

where the a, are the coefficients in the formal expansion (5), found by interpolation
in the points B, using the functional values fo(B;).

Assume that a function f(z) € H(k,«,2) on y exists having the desired
interpolation properties, and let 5,(z) denote the sum of the first # terms of the
series in (5). Since f(z) is of class H, on y ([I], p. 359), s(z) is the Fourier
expansion of f(z) in terms of the orthogonal functions ¢,(z), ..., ¢,(z). Clearly,
any rational function of type (n — 1,n), with formal poles in the points 1/8,, ...,
1/B,, is a linear combination of the functions ¢(2), ..., ¢,(z), and hence s5,(z)
is the rational function of that type which is of least squares approximation to
f(2) on y. By Theorem 2, we thus have

1/2
(], 17 s ldzl) " < dyfn+=.
An easy calculation yields

[,r@=s@P = [ 7@ dl- 3 b
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where |b,]? = 2m|a;]2/(1 — |B;]*). Thus
SR = [ 170~ @ el = (sl

which implies the necessity of (6).
Now assume that (6) holds. By the Riesz-Fischer Theorem, the series
> a,¢,(2) converges in the mean on y to a function g(z) of class L, on y. In

fact,
( j 50 -3 b

and so by Theorem 2, the function g(z) is equivalent on y to a function f (z) of
class H(k,«,2) on y. Since ([2], p. 107) the seriesin (5) converges to f(z) interior
to y, f(2) has the desired interpolation properties, and the proof is complete.

N 1/2 — 172
) (5 w) < Ay,

=n+l

We remark that since the 8; have no limit point on v, the solution (if it
exists) of the interpolation problem of Theorem 3 is unique and is given by
the series in (5).
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